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A theory of the deviation of the Lorentz-Lorenz function, (n2 — l) / (n 2 -f 2)p, for the solid rare gases from 
its gas phase value is given. A tight binding exciton model for the excitations in the solid and the mathematical 
formalisms of second quantization and quantum mechanical Green's functions are used. The results are in 
reasonable agreement with experiment. Limitations of the model are discussed, and a physical explanation 
of the results is given in terms of virtual excitations of excited free atom states in the many body ground state 
of the crystal. 

I. Introduction 

The noble gases consist of spherical nonpolar mole­
cules which crystallize in a face-centered cubic struc­
ture (except for helium). Therefore, the refractive 
indices (dielectric constants) of crystals of these ele­
ments ought to obey the Lorentz-Lorenz (Clausius-
Mosotti) law. It is found experimentally, however, 
that these laws are not strictly obeyed.2'3 The devia­
tion is small, of the order of a per cent or so, yet it is 
outside the experimental error. This paper is devoted 
to a theoretical discussion of this deviation. 

One may perhaps ask why it is desirable to perform 
a lengthy and fairly sophisticated calculation of such 
a small effect. There are several answers to this 
question. In the first place, it is very annoying to 
have unexplained observations in the literature, 
especially in a field as thoroughly explored as this one. 
But more important than this, the explanation of the 
phenomenon in question may have some important 
bearing on the problem of intermolecular forces in 
dense media. There is inconclusive, but suggestive, 
evidence from the calculation of equilibrium and 
transport properties of liquids45 that the intermolecular 
forces in dense phases differ from those inferred from 
the study of gas phase properties. One need only re­
call the approximate London formula, V(R) — 
-Sa^hfoZ^R6, for the dispersion force between atoms; 
here a is the polarizability, and v0 is a characteristic 
frequency. The relevance of optical studies of a 
should be clear. 

The theory presented here uses the formalism of 
thermodynamic Green's functions, and second quanti­
zation. For the excitations in the crystal we have used 
the model of.tightly bound, or Frenkel-type, excitons. 
The radiation field is not quantized, but is treated as 
a classical external field. 

II. Theory 

The Model.—The Hamiltonian for A7 atoms of atomic 
number Z is, in dipole approximation6 

H0 = E E ^- - ^ 1 + 
L = i [ > =. i 2m \riL\ 

I E i — — - 1 + I E P1-T1 1-P1 . (1) 
2{ * i \riL ~ TjL: J H ? i l ' = l 

(1) Alfred P. Sloan Founda t ion Fellow. This work also suppor ted in 
par t by the Nat ional Science Founda t ion TGP 1951). 

l2) (a) O. O. Jones and B I.. Smi th . Phil Mag., 5, 355 (1960); (b! B. L. 
Smi th , ibid., 6, 939 (1961; . 

(3) R. I.. Amey and R, H. Cole. J. Chem Phys., 40, 146 (1964). 
'4) W, B. Brown and J. S. Rowlinson, MoI. Phys.. 3, 35 (1960S. 
|'5) I. I). (kenberry and S A. Rice, J. Chem. Phys. 39, 1561 (1963). 
(6) J. J. Hopfield. Ph\s. Rev.. 112, 1555 (19.58). 

where 

z 
P 1 = e E TtL 

i = i 

and 

T 1 1 . = R L L ' - ! [ 1 - 3(R1 1-R1 1-ZR1 1^)] 

Here riL is the vector distance of electron i from nucleus 
L and RL; / is the vector distance between nuclei L 
and L'. The first term of H0 is the Hamiltonian for 
N isolated atoms; the second is the Coulomb inter­
action between atoms in dipole approximation. 

We take as the atomic model a two-state atom, with 
a ground state O)1 and an excited state I)1 , where 
the subscript indicates that the atom is located at R/.. 
Furthermore, we introduce raising and lowering opera­
tors, bL

+ and bL, for each atom, with the properties 

6L+JO)1 = ll> t; bL + 'V)L = 0 

bL\0)L = 0; bL\\)L = |0) t (2) 

and an additional set of operators bL° with the property 

&L° |0)L = -\())L; b^\V)L = \\)L (3) 

These operators obey the commutation relations7 

[ & L + , M = SLL'&L0 (4a) 

[bL\b,,] = -2hwbL (4b) 

[bL°,bL^] = 2bLL,bL
+ (4c) 

In a second quantized representation, these operators 
permit writing the dipole moment operator P L as 

P L = X(6,,+ + bL) (5) 

X = (n!eEr ( , | l ) 
i = i 

a n d t h e H a m i l t o n i a n , (1), in t h e form 6 

H0 =
 E-° E bL° + \ E 4>(L - L')\b^bL^ + 

2 L = i 2/ , ^ v 

bt.br.- + b,,+bL> + bLbL, + ] (6) 

4>{L - U) = X-T1 1--X 

Here E0 is the energy difference between the excited 
and ground states of a free atom. The form (O) for 
the Hamiltonian implies tha t we have taken the zero 
of energy half-way between the ground and excited 

(7) R. Hoffmann, Pad. Re'.. 20, 140 (H'0.3). discusses these comminut ion 
rules in detail , and gives references to the Russian l i terature , We do no! 
~. . i .~ *u~ ,. J™^*; , , , , H^cussed by TIofTmann, of sett ing 6'1 - - 1 

bt.br.-
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states. This is the most convenient form for our pur­
poses and merely amounts to adding a constant to 
the Hamiltonian (1). 

To discuss the optical properties of our model we 
must add to H0 a term accounting for the interaction 
of the system with radiation, This is most conveniently 
done by describing the radiation field by its vector 
potential, A, in Coulomb gauge. In dipole approxi­
mation the interaction Hamiltonian can be written in 
the second quantized form 

H1 = - — E X-A1(J1+ - bL) (J) 
C L 

Here w0 = E0/h, and At is the value of the vector 
potential at R1. A is, of course, time dependent. We 
emphasize that A is the vector potential of the macro­
scopic field, not the local field. 

In what follows, we shall indicate by brackets, 
{. . .), the expectation value of the operator which 
stands in the brackets, thermally averaged over the 
states of the system. The fundamental quanti ty which 
we wish to compute is the expectation value of the 
dipole moment of atom L, (P1(Z)), to first order in 
the interaction, Hy. Since P1OO satisfies the Heisen-
berg equation of motion 

ihPL = [P1(O, H0 + H1(I)] (8) 

we can write, to first order in Hi 

(P1O)) = i/H / ^ dt'([Hy(t'), P1O)]) (9) 

Omitted here is the zeroth order term (A = 0), which 
vanishes because our atoms are nonpolar. In (9), 
P1(J) is the Heisenberg operator 

P1(O = e''^-'-pLe-i/hm (10) 

for the system in the absence of radiation. Similarly 
the dependence of Hy(t') on 0 comes partly from A(O) 
and partly from the time dependence of bL

+ and bL, 
as Heisenberg operators. 

Introducing the definitions (5) and (7), we can 
write (9) in the: form 

( P L ( O ) = 

E ( 1 ^ ) x x / _ " . &'kM(t')GML+(t,t') (11) 

where 

GML+(t,n = iBit - t')([bM+(n - bM(tr), bL+(t) + 

bA))) d2) 
6(x) is zero for x < 0, unity for x > 0. I t is the in­
sertion of the 8 function which enables the upper limit 
of the integral in (11) to be extended to infinity. 

The Green's Functions.—GML+{t,t') is called a re­
tarded Green's function.8 The main property of such 
a function which we shall need is its equation of motion, 
which is8 

ih - GML
+(t - /') = -HS(t - t')([bM

 + - bM, bL+ + 
CH 

M + W - t')([b,f+(t') - bM(t>), 
[bL

+(0 + bL(t), H0]]) (13) 
(8) Properties of Green's functions may be found summarized in "Fluctua­

tions, Relaxation, and Resonance in Magnetic Systems," D. ter Haar, Ed., 
Oliver and Boyd, Edinburgh, 1962, p. 119 el seq.; V. L. Bonch-Bruevich 
and S. V. Tyablikov, "The Green Function Method in Statistical Mechanics," 
North Holland Publishing Co., Amsterdam, 1962. 

In the first term on the right, both factors in the 
commutator can be taken at the same time, because of 
the 6-function. By the commutation rules (4) the 
expectation value can be written 

([bM
+ - bM, bL

 + + bL\) = 2&ML(bL°) (14) 

To evaluate the second term on the right, we com­
pute the commutator 

[bL
+ + bL, H0] = [bL+ + bL, f° E V ] = 

6 M 

| ° [bL
+ + bL, bL°] = - £ o ( ^ + - bL) (15) 

The dipole interaction term of H0 commutes with the 
dipole moment operator, and hence gives no contri­
bution. If we write 

GML~ = i»(t - t')([bM+(t') -

bM(t'),bL+(t) - bL(t)]) (16) 

then 

IhGuL+ = -M(t - / ' )W&°> - EOGML' (17) 

We have dropped the index in (b0) since, by transla-
tional invariance, this is independent of L. 

We must now find a differential equation for GML~-
This is of the same form as (13) except that (bL^ + 
bL) is everywhere replaced by (bL

+ — bL)- This 
motivated the choice of the ± superscripts which 
distinguish the two Green's functions. Thus 

ihGML~ = ie(t - t')([bM+(t') -

M O , [^ + (O - bL(t), H0]]) (18) 

Evaluating the commutator in the same manner as 
above, we find 

ihGML- = -E0GML+ + 2 E <P(K - L)id(l - 0) X 

(IbM+O') - M O . (bK+(t) + bK(t))bL»(t)]) (19) 

At this point we see a typical feature of Green's 
functions; the equations of motion involve Green's 
functions of higher order. An approximation is there­
fore necessary, and we make a "decoupling" approxi­
mation which has proved reasonably successful in the 
theory of ferromagnetism.9 To wit, we factor J1

0 out 
of the commutator in (19). 

W - t')([bM+(t') - bM(t'), (bK+(t) + 

bK(t))bLo(t)]) ^ GMK+(b°) (20) 

The justification of this approximation will be dis­
cussed later. 

With the approximation (20), (19) becomes 

ihGML~ = —E0GML+ + 

2(6°) E 4>(K - L)GMK+ (21) 

Equations 17 and 21 thus form a set of linear coupled 
differential equations, which can be solved by Fourier 
techniques. If we introduce the temporal Fourier 
transforms, g.v/i±(a>), by 

GML±(t ~ 0) = f°m g.VL±(«)e-,'B" " n dco (22) 

(9) See the review by D. N'. Zubarev, Usp. Fiz. Nauk, Tl, 71 (1960): .Vine' 
Phys.-Usp., 3, 320 (1960). 
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then (19) and (21) become 

«8* - (b°)5ML ~ UX&ML- (23) 

2(b°) E 4>(K - L)QMK+ (24) 
K ^ L 

Introduce the spatial Fourier transforms gq*, cs(q) 

QML ± - - Z e'*'(*" ~ R t , 2 , ± (25) 
N 

&ML ~ - E 
Jq-(RM - R t ) (26) 

4>(K - L) = l-T e**K ~ R t J 

A q 
¥>(q) (27) 

where the sums are over the first Brillouin zone of the 
reciprocal lattice. Then (23) and (24) are transformed 
into 

1 
">2q (b°) ~ co„g 

COgq" = -COOg,+ + 2(6»)V(q)gqH 

These equations are trivial to solve for gq^ 

w(b°) ( /h°^ x _ 1 

gq+ = 
T 

coo + 2 —coovKq) 

(28) 

(29) 

(30) 

It may look as though we must now perform the in­
verse Fourier transforms on (30), but this is not the case. 
In the first place, we are more interested in the fre­
quency dependence of the observed moment than its 
time dependence. Hence, by the convolution theorem 
for Fourier transforms, (9) is equivalent to 

<PL(co)> = 2x(^-°W;EA J , ( u)g J , t+(a,) (31) 

Secondly, we are going to assume that A is a transverse 
field (corresponding to radiation) of wave length 
long compared to a lattice spacing. This is the usual 
optical situation. This means the spatial Fourier 
components of A, A(k), are appreciable only for k ~ 0, 
and hence only g(1

 + (co) is involved in (31) 

(PiAu)) 
— IU)Q 

he 
XX -ALg0 + (u) (32) 

However, v?(q), being a dipole sum, is not uniformly 
convergent near q = U,10 so that it looks as though g0 

is not well defined. This is not so. We note that since 
A is transverse, the only component of the dipole 
moment X which is operative is that component 
parallel to A. Hence, only the transverse part of the 
Fourier transform of the tensor TL/.< enters into ^(q), 
and ŝ(O) is given by10-" 

4TT IX2 

<K<>) = P'--
3 3 

(33) 

The X -/3 comes from the assumption that the square 
of the component of the dipole moment interacting with 

|10) M. H Cohen and F Keffer, Phys. Rev., 99, 1128 (19M) 
( I I ) P W. Anderson, "Concep t s in Solids," W. A. Benjamin, Inc. , New 

York, N. Y., H)BH, p. 1 « 

a transverse field of given polarization is V3 of the total 
dipole moment squared. We make this assumption 
because we want our model to simulate the behavior of 
the rare gases, whose lowest excited states are P states. 
Hence, they are triply degenerate, though only one 
component of the degenerate triplet will interact with 
radiation of a given polarization. 

The vector potential, A(t), is related to the electric 
field, E, by E = - ( l / c ) A . Hence 

E1(O,) AL(co) (34) 

and, from (32) 

(PL(CO)> 
2co0 

E1(O 
\X\Hb°) 

' 3 (co„ 2 - CO2) 

2co0(6°) 

/ j (co0
2 — co2) 3 

1 + 

4TT X 
(35) 

where we have replaced XX by (|X2 |/3)1 in accordance 
with the discussion of the last paragraph. 

Now the polarizability of a free atom in its ground 
state is 

2 too \X\ 

3h COo 

so that we finally have 

(PL) = 
(b°/aEL 

1 + 47rpa(&°>/3 

(36) 

(37) 

(Pz.) is the dipole moment of the atom at L. Thus, 
P(PL) is the polarization of the solid at L, so that 

P(PL) 
1 

4TT 

where n is the index of refraction. 
(38) in (37) leads immediately to 

» ! - l l 
- (6° ) 

(38) 

Substitution of 

a (39) 

(40) 

n2 + 2 p 3 

The physical significance of (b0) is that 

(b°) = 2/ - 1 

where / is the probability that a given atom is excited 
in the true many body ground state of the system. 

Evaluation of / .—To evaluate / , we consider the fol­
lowing Green's functions 

UML = iBif, - t')([bM+(t'), bL(t)]) (41a) 

vML = m - n(ibM+{t'), bL+(t)}) (41b) 

The Green's functions U and V satisfy the equations 

ihVML = -%{¥)&MLb(t - t') + E0U ML -

(b°) E 4>(L - K)(UML + VMK) (42) 

ihVML = -E0VML + 

(b0) E 4>(L - K)(UMK + V.„K) (43) 
K * L 

These equations are derived in exactly the same way 
as were eq. 17 and 21, and are also approximate since 
the factorization used in (19) has been used here also. 
By introduction of the space-time Fourier transforms 
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Mq(u>), Uq(co) of U and V, just as above, we can easily 
solve (42) and (43). If we set, for compactness of 
notation 

M q 2 = CO0
2 2 —IT- <p{q) (44) 

the solution is 

(b°) (l Mq 

4TT 

COo + — + 1 
2co0 2fi„ Mq 

Mq_ , «o_ _ 1 

2c0o 2/JQ " + Mq 
(45) 

The relevance of this formula is the following. Con­
sider the correlation function (bM^(t')bL(t)}. This 
will have a Fourier transform, JML(O>) 

(bM+(t')bL(t)) = f'^ V M e - ' " 1 ' - ' ' 1 dco (46) 

The quan t i t y / which we are trying to calculate is 

/ = Hm (bM
+(t')bM(t)) = J-E f " /q(«)dw (47) 

where /q(co) is the spatial Fourier transform of 7M.v(w). 
I t is shown in the theory of Green's functions8 that 

A(«) Hm 
. 0 « ' 

3« 

where/3 = (£7")-

- [wq(co + i'e) — 

Mq(co - U ) ] (48) 

From (48) and (45) 

(b°) 

2 e> 

1 
Sw ^ + ^ + I ) 5 ( C O - M q ) 

1 (\2cOo 2/iq 

( f + f- - l) .(CO + M,) (49) 

We need only consider the limit |̂ co] > > 1 since hwo 
>> kTfor any reasonable temperature. In th is l imi t 

2/ 

1 2/ TV 
l.s 

.2o>o 2,Uq 
(50) 

The summand in (50) can be expanded in a series in 
<p(q)/Scoo, using the definition (44): To more than 
sufficient accuracy we then have 

2/ 

(1 - 2/)3 
1 y y 2 ( q ) 

2N , ft W 
(51) 

The summation over q can be expressed in terms of 
nonoptical quantities by noticing that1 1 

27V , /koo 
(52) 

where AE is the negative of the contribution to the 
binding energy of the crystal due to the attractive 
London forces, per particle. Hence 

2/ 
(1 - 2/)3 AE/E0 (53) 

Numerical Evaluation.—AE can be most easily ap­
proximated by summing the attractive part of the 
Lennard-Jones interaction, — 4t(<r/R)e, over the sites 

of a face-centered cubic crystal. The result of such 
a summation is12 

AE = 2t X 14.454 (54) 

where € and a are the Lennard-Jones parameters and 
do is the nearest-neighbor spacing. For argon we have 
used t/k = 12O0K., a = 3.41 A., and d0 = 3.83 A.,12 

from which AE = 0.149 e.v. For argon, the lowest 
excitation energy is E0 = 11.6 e.v. Hence, from (53) 

2/ = 0.0123 (55) 

and the Lorentz-Lorenz function (w2 — l ) / (« 2 + 2)p 
is 1.23% lower in the solid than in the dilute gas. 

Amey and Cole3 have measured the Clausius-Mo-
sotti function (e — I)/{t + 2)p, and find a decrease of 
(0.84 ± 0.12)% in going from the gas to the solid. 
The work of Jones and Smith shows a 1.7% decrease. 
This difference can probably be accounted for by dis­
persion. Our result is clearly of the right order of 
magnitude, although the simple model we have taken 
gives no dispersion for the quant i ty / . 

For krypton, the static data of Amey and Cole3 

show a decrease of the Clausius-Mosotti function of 
(0.64 ± 0.24)%. Our estimation yields 2.45%. 
We are unable to make any valid comparison with the 
measurements of Smith2 since his data combined 
with the value13 1.000427 for the index of refraction 
of krypton at STP yield a decrease of some 12%. This 
suggests that there may be something wrong with the 
data. Smith, in a private communication, has agreed 
with this comment and has said that he plans to redo 
the experiment at an early date. 

III. Discussion 

The theory presented here contains two important 
approximations. The first is the model used. The 
second is the linearization of the equations of motion 
of the Green's functions, exemplified by eq. 20. 

Regarding the latter, we note that some such 
linearization, or truncation, is a practical necessity 
when using Green's function methods. The equation 
of motion of an nth. order Green's function always in­
volves a higher order Green's function (except for the 
trivial case of noninteracting particles). Problems 
of excitation in molecular crystals have sometimes 
been treated by approximating the b+ and b operators 
by boson operators, i.e., setting {bL

+,bL'] = — &LL-.7 

This is tantamount to setting / = 0, and would lead 
to a null result in our case. The approximation we 
have used is the next most complicated approximation; 
it is analogous to the procedure in self-consistent field 
theories, and leads to a nontrivial result. 

The model used is, of course, oversimplified. Rare 
gas atoms have more than one excited state. How­
ever, in argon the first excitation has a large oscillator 
strength, so that we believe the model is certainly 
qualitatively valid. In the basic Hamiltonian (6), 
we have assumed that the excitations are tight-binding, 
or Frenkel-type, excitons. However. Knox14 has 

(12) J. O. Hirschfelder C. F Curt iss , and R. B. Bird, "Molecula r Theory 
of Gases and Liquids ," John Wiley and Sons, Inc , New York, N. Y., 1954, 
p, 1040 

(13) Quoted in "Argon, Helium and the Rare Gases , " Vol, 1, G. H 
Cook, Ed., Interscienee Publishers, New York, N', Y., 1961, p. 239, 

(14) R. S. Knox, Rad. Res.. 20, 77 (1963). 

file:///2cOo
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argued that the excitations are more like weak binding, 
or Wannier-type, excitons. We do not believe that 
this upsets the qualitative validity of the model. 

We have also neglected overlap and lattice vibrations. 
The former would be expected to be of some importance 
in the solid, especially when the density is increased. 
This is reflected in our result; / increases with increas­
ing density, whereas experimentally the Lorentz-
Lorenz function increases with increasing density 
after the initial drop when the solid is formed.15 

We therefore conclude that we have described cor­
rectly the main qualitative features of the physical 
situation. A considerably more complicated model 
would be necessary to handle all the secondary effects 
which are also operative. 

(15) However, recent unpublished results of G. O. Jones and A. Eatwell, 
Queen Mary College, London, show a short rise in the Lorentz-Lorenz func­
tion from about 910 to 925 amagats, followed by a marked decrease extend­
ing to about 990 amagats. 

Many molecules have been observed to possess short 
dielectric relaxation times because of the existence of 
internal modes of relaxation, which are somewhat 
shielded from the external molecular environment. 
The present paper presents measurements in the 
kilomegacycle region on six aromatic compounds con­
taining the CH2Cl, CH2CN, and the OCH3 groups as 
a means of investigating the intramolecular rotational 
freedom of polar groups and the effects of steric re­
pulsion. 

Experimental 

Apparatus.—The apparatus and various methods of measure­
ment have been described in previous papers.3 - 5 

Purification of Materials.—Anisole, purchased from Eastman 
Kodak Co., was fractionally distilled under atmospheric pressure. 
The fraction condensing at 154° gave an index of refraction, «2 0D, 
of 1.5179, which compares with a literature value6 of 1.5179. 

(1) This research was supported by the U. S. Army Research Office 
(Durham). Reproduction, translation, publication, use, or disposal in 
whole or in part by or for the United States Government is permitted. 

(2) This paper represents part of the work submitted by E. Forest to the 
Graduate ,School of Princeton University in partial fulfillment of the re­
quirements for the degree of Doctor of Philosophy, 

(3) H. I,. I.aquer and C. P. Smyth, J. Am. Chem. Soc, 70, 4097 (1948), 
(4) W, M. Heston, Jr., A D, Franklin, E. J, Hennelly, and C. P, Smyth, 

ibid., 72, 3443 (1950). 
(5) D, A. Pitt and C. P. Smyth, J Phys. Chem., 63, 582 (1959), 
(6) "Elsevier's Encyclopedia of Organic Chemistry," F. Radt, Ed., 

Elsevier Publishing Co., New York, X, Y,, 1955. 

The theory may certainly be classed as semiempirical, 
in that we have used experimental data on nonoptical 
properties to evaluate parameters in the final result. 
However, there are no adjustable parameters in the 
theory. 

We conclude with a brief physical discussion of why 
the main result, eq. 39, is very reasonable. In the 
true ground state of the crystal, each atom has a certain 
amplitude for being excited. These virtual excitations 
are, in fact, the mechanism for producing the London 
forces which bind the crystal together, when looked at 
from the point of view of perturbation theory. Now 
an atom in an excited state has a negative polariza-
bility, which is equal and opposite to the polarizability 
of an atom in its (unperturbed) ground state in our 
model. vSince there are, on the average, Nf atoms in 
excited states, .V(I — / ) atoms in their ground states, 
the effective polarizability of an atom should be (1 — 
2f)a, which is exactly what occurs in eq. 39. 

l-(Chloromethyl)naphthalene, purchased from Eastman Kodak 
Co., was fractionally distilled under a reduced pressure of 10 mm. 
The fraction condensing between 146 and 147° was collected. 1-
Naphthaleneacetonitrile, obtained from Eastman Kodak Co., 
was fractionally distilled under a reduced pressure of 13 mm. 
The fraction collected between 182 and 183° gave an index of 
refraction, K20D, of 1.6205. Phenylacetonitrile, purchased from 
Eastman Kodak Co., was fractionally distilled under reduced 
pressure. The distillate gave an index of refraction, «2 6D, of 
1.5206, which compares with a literature value7 of 1.5211. p-
Xylylene cyanide, obtained from Aldrich Chemical Co., was re-
crystallized once from ether and twice from benzene and dried in 
an Abderhalden pistol. The purified material gave a melting 
point of 98°, which compares with a literature value of 98°. p-
Dimethoxybenzene, purchased from Eastman Kodak Co., was-
recrystallized four times from benzene and dried under vacuum in 
an Abderhalden pistol. The purified material gave a melting 
point of 56.2°, which compares with a literature value8 of 56°. 
Benzene, purchased from the Allied Chemical Corp., was of re­
agent grade, thiophene-free quality. It was dried over Drierite 
and used without further purification. 

Results 
The experimental results obtained from measure­

ments in benzene solution were treated in the manner 
previously described.9 The dielectric constant and 

(7) "Handbook of Physics and Chemistry," Chemical Rubber Publishing 
Co., Cleveland, Ohio. 1956. 

(8) I. Heilbron and H M. Bunbury, "Dictionary of Organic Compounds," 
Eyre and Spottiswoode, London, 1953. 

(9) A, D, Franklin, W. M. Heston, Jr., E. J, Hennelly, and C P Smyth; 
J. Am. Chem. Soc. 72, 3447 (1950). 
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The dielectric constants and losses^t wave lengths of 1.3, 3.2, 10, and 25 cm. and 575 m. and temperatures of 
20, 40, and 60° have been measured for anisole, ^-dimethoxybenzene, phenylacetonitrile, />-xylylene cyanide, 
l-(chloromethyl)naphthalene, and 1-naphthaleneacetonitrile in dilute benzene solution. The data have been 
used to calculate the dielectric relaxation times of the molecules. ^-Dimethoxybenzene and ^-xylylene cyanide 
relax by the rotation of the methoxy and acetonitrile groups, respectively, about their bonds to the ring. The 
results for anisole have been interpreted in terms of a molecular and an intramolecular relaxation process, while, 
although more than one relaxation process is evident in the case of phenylacetonitrile, no resolution could be 
effected. l-(Chloromethyl)naphthalene and 1-naphthaleneacetonitrile show no evidence of intramolecular 
group rotation, confirming the steric blocking of group rotation by the hydrogen in the 8-position indicated by 
molecular models. 


